欢迎来到2024新澳门免费原料网!
一直以来,大众对3D打印机的态度是毁誉参半。接受3D打印机的人,多实际享受过3D打印机带来的利益。而不接受3D打印的理由是林林总总,如价格、耗材成本、使用门槛、应用领域、利润空间、技术原理等。早些时间,网上出现的一篇名为“为什么3D打印机无人提起”的文章,其3D打印成本高、耗材价值不菲、技术不完善的观点可能代表了现阶段一部分人对3D打印的看法。
造成这样局面的原因可能是受众接收相关信息渠道有限、3D打印机行业普及率不够、影响力匮乏等。3D打印机厂家接下来一起谈一谈大家对3D打印存在一定误解,以及存在感低的原因。
三维立体打印机,也称三维打印机(3D Printer,简称3DP)是快速成型(Rapid Prototyping,RP)的一种工艺,采用层层堆积的方式分层制作出三维模型,其运行过程类似于传统打印机,只不过传统打印机是把墨水打印到纸质上形成二维的平面图纸,而三维打印机是把液态光敏树脂材料、熔融的塑料丝、石膏粉等材料通过喷射粘结剂或挤出等方式实现层层堆积叠加形成三维实体。
关于3D打印机成本高的问题
3D打印机大体上可分为金属3D打印机和非金属3D打印机。其中非金属3D打印机中又包含FDM(熔融沉积)、光固化等。产品构造原理不同,价格也相差甚远,市面上的设备价格从几千、几万、几十万、上百万不等。
首先得出成本高结论的先决条件是要有对比,有对比才有高低,其次对比物要有实际参考价值,最后是预期实现价值与付出成本的对比。
很多人会将3D打印机与普通打印机相比。这个比较首先就是错误的,打印机是二维平面的打印,3D打印机是三维立体模型的打印,使用用途也相差甚远,一种是日常办公,一种是生产辅助。
3D打印在实际生产中,可以实现原型验证,与传统开发模具相比成本能节省50%,验证时间也能提升一大步;也可以生产需求较小或者不再量产的零部件,解决一部分产品库存和供应链的问题,已经在航天、科研、汽车、文创、建筑等领域都有比较成功的案例。如此看来3D打印机非但不是成本高,反而是在创造利润。
耗材成本高的问题
3D打印耗材与3D打印机是配套使用的,价格高低同样取决于最终打印出来的模型产品的价值,以及赋予企业经营的核心战略利益。作为能够提高企业生产效能、降低成本工具的重要组成部分,耗材价格高低相信用户自有判断。况且FDM的耗材一公斤低至只有几十元,质量好一些的价格大概是上百到几百不等,光敏树脂、金属粉末费用也没有高的离谱。企业完全可以结合目前3D打印技术的使用预期和企业利润情况选择3D打印机的类型和耗材,而且3D打印设备和耗材的成本区间跨度足以让企业保持足够的灵活性。
技术不完善问题
相信任何行业都处于不断发展的进程中,3D打印机自然也不例外。外观已经从基础的组装概念机无外壳甚至木头外壳的阶段发展到钣金外壳。打印精度更是获得了诸如NASA、中国航天、宝马汽车等众多企业认可。
3D打印机的产品特性也在不断完善,远程控制、语音播报、监控已经成为标配,部分企业的断电续打、集群控制等功能在实际应用中已经获得广泛认可。
在3D打印的基础构造方面,同样出现诸多创新。比如为保证平台稳定和精度提出的3+2平台结构;保证设备供料顺畅运用的双电机供电原理;金属粉末设备的耗材使用率等提升。
目前摆在全球3D打印企业中关键的问题是突破3D打印速度的问题,能率先取得突破的企业,相信会占领行业发展的制高点。
3D打印机存在感低的问题
确实3D打印机不像汽车、快消品、电子产品那样人尽皆知。大的原因是使用者主要集中在医疗、教育、工业设计、生产制造等B端用户中。核心用途是改善企事业单位运作方式、供应链优化、生产效能等,旨在提升产品质量,企业经营灵活性、产品及服务的可靠性等。而且个人用户只占据很小的比例,而且仅限于个人爱好。这样的情况,某种程度上也能解释3D打印机为什么存在感低。
工艺流程
(1)三维模型构造 由于RP系统只接受计算机构造的产品三维模型(立体图),然后才能进行切片处理,因而首先应在PC机或工作站上用CAD软件(如UG、Pro/E、I-DEAS等),根据产品要求设计三维模型;或将已有产品的二维三视图转换成三维模型;或在逆向工程中,用测量仪对已有的产品实体进行扫描,得到数据点云,进行三维重构。
(2)三维模型的近似处理 由于产品上往往有一些不规则的自由曲面,加工前必须对其进行近似处理。经过近似处理获得的三维模型文件称为STL格式文件,它由一系列相连空间三角形组成。典型的CAD软件都有转换和输出STL格式文件的接口,但有时输出的三角形会有少量错误,需要进行局部修改。
(3)三维模型的分层(Slicing)处理 由于RP工艺是按一层层截面轮廓来进行加工的,因此加工前须将三维模型上沿成形高度方向离散成一系列有序的二维层片,即每隔一定的间距分一层片,以便提取截面的轮廓。间隔的大小按精度和生产率要求选定。间隔越小,精度越高,但成形时间越长。间隔范围为0.05~0.5 mm,常用0.1 mm,能得到相当光滑的成形曲面。层片间隔选定后,成形时每层叠加的材料厚度应与其相适应。各种成形系统都带有Slicing处理软件,能自动提取模型的截面轮廓。
(4)截面加工 根据分层处理的截面轮廓,在计算机控制下,RP系统中的成形头(如激光扫描头或喷头)由数控系统控制,在x-y平面内按截面轮廓进行扫描,固化液态树脂(或切割纸,烧结粉末材料,喷射粘结剂、热熔剂和热熔材料),得到一层层截面。
(5)截面叠加 每层截面形成之后,下一层材料被送至已成形的层面上,然后进行后一层的成形,并与前一层面相粘结,从而将一层层的截面逐步叠合在一起,最终形成三维产品。
(6) 后处理 成形机成形完毕后,取出工件,进行打磨、涂挂,或者放进高温炉中烧结,进一步提高其强度(如3D-P工艺)。对于SLS工艺,将工件放入高温炉中烧结,使粘结剂挥发掉,以便进行渗金属(如渗铜)处理。